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Abstract-Two-dimensional stress fields in crystals due to edge dislocations, vacancies, precipitations, cracks
and their combinations are obtained experimentally by using the slab analogy between an Airy stress function
in a slice and a deflection in a slab, The results agree fairly well with those obtained theoretically, It is thus
found that some complicated problems in stress analysis in the field of micromechanics can be solved with
the method proposed in this paper.

1. INTRODUCTION

THE slab analogy was first recognized by Timpe [1] in 1905. The practical applications
of the analogy to stress analysis were not found until 1908 by Wieghardt [2] and 1931
by Jensen [3l Some improvements in the techniques were introduced by Crantz [4] in
1939 by adopting Einsporn's optical spherometer for measuring the curvature of the
deflected plate. Details of the mathematics were developed by Mindlin [5] in 1946, and
by Mindlin and Salvadori [6] in 1954. Zienkiewicz and Cruz [7] and later Bouwkamp [8]
recognized the advantages of using the Moire method in applying the analogy and have
shown how many problems of stress distribution can be solved simply. The Moire
method and its general technique of application to structural problems is described by
Ligtenberg [9] and Bradley [10].

In this paper, the slab analogy will be applied to the recently developing field of
mechanics related to the microstructure of materials. The stress fields due to dislocations,
precipitations, inclusions and microcracks in crystals are obtained from the Moire
fringes in photographs taken by reflecting light between the grid screen and the slab
surface. Some of the results are compared with the theoretical solutions obtained by
the theory of elasticity. This is a new application of the slab analogy to the study of stress
fields induced by impurities in crystals. Although the problem can be solved numerically
with the aid of a computer, this paper presents an alternative which has some practical
advantages in as much as the configuration can be easily changed and a full visual picture
of the stress variation is easily obtained.
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(1)

(2)

2. SLAB ANALOGY

The theory of the slab analogy presented here is an extension and reformulation
somewhat following the lines of reference [6J and earlier works in this area. The derivation
is simplified by introducing the tensor notation.

Let us consider a two-dimensional domain of a crystal bounded by Co (Fig. 1(a)).
The problem is to find the stress field when a dislocation is given inside c and a boundary
force Xi is given on Co. The stress field can be obtained from the curvature of deflection
of the slab, (Fig. 1(b», by applying a suitable transverse load and moments inside c'

with suitable constraint conditions on Co. The slab has a geometrical symmetry with the
domain of the crystal. The two-dimensional domain of the crystal will be called 'slice'
hereafter. The Cartesian coordinates (xJ and (x;) are introduced in the slice and the slab,
respectively.
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FIG. I. Illustration of two·dimensional domains of slice (a) and slab (b).

The following line integrals of the increment of displacement, dU i , and the increment
of rotation about the x 3-axis, dW3, are the fundamental formulae in the slice [6]:

fc dW3 = £e3,/ik,i dXk,

fdUi = teijdxi+t e3,hxhe3,hk,ldxk-e3,;YJt dW3,

where c is the Burgers circuit of the integration, 8ij a strain tensor, e3'j a unit permutation
tensor, and Yi is a coordinate of a starting point of circuit e,

If the strain tensor in (1) is expressed by an Airy stress function, ffJ, by using Hooke's
law, (1) can be written as follows for the plane state of stress:

i Ii a Z1dW 3 = EYe an (V ffJ) ds,

i i l,!( C Z a z) 1+",!(1
Idui+e3iiYildw3 = EJ: e3,han (V' ffJ)-xias(V' ffJ). ds-TYe a/ffJ,i) ds,

where dn and ds are the normal and the tangential line element on circuit c, and E and \'
are Young's modulus and Poisson's ratio, respectively. The corresponding expression for
plane strain is obtained by replacing the factor (l/E) in (2) by (l-\,z)jE.
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Considering the analogous slab (Fig. l(b)), let F3 and Ti represent, respectively, the
resultants of forces and couples acting on the region within c' referring to point y;, where
y; is a coordinate of a starting point of circuit ct. Then F3 and Ti can be written in terms
of shear force Qi and moment Mij defined on c' as follows:

F3 = _l Qini ds,
1

1; = -l e3'j(xj - yj)Qknk ds + l e3'jMjknk ds,1, I,
where ni is the normal vector on circuit c'. Mij and Qi can also be written in terms of the
deflections of the slab, w, as follows:

M ij = D(l v')w.ij+15ijDv'V2w,

where D and Vi are the bending rigidity and Poisson's ratio, respectively. Substituting
(4) into (3) leads to

F3 = -Df,:n(V2
W)ds,

1;+e3ijYjF3 = -D £(e3ijXj:n(V2W)-x;:s(V2W)) dS+D(l-V')f, :s(W,i)dS.

For the slab analogy to be valid we can take

<p = yA2w,

dXi = Adx;,
(6)

(7)

with the coefficients of proportionality, .A. and y. Now, substituting (6) into (5) and com­
paring the result with (2) leads to

yF3 f-- = E dW3'
D c

- ~(Ti+e3ijyjF3) = E(±du;+e3,jYjfdW3)+(v+v')t :/P,;)dS.

Now iftdUi and ldw3 are made proportional to Ti and F3, respectively, and ifJ;s(<P,J ds
c :t I

is zero (the requirement of a zero force resultant on such a region) then the analogy is
satisfied.

The deflection of the slab, however, is under the following constraint conditions on
C' ,
0'

on c~ (8)
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(9)

which imposes prescribed deflections and slopes on the boundary. It should be noted
that if the boundary, Co, in the slice is free from surface tractions, the corresponding
boundary, c~ in the slab becomes a clamped edge. If the stress field in the slice is due to
an edge dislocation with Burgers vector b in the x I-direction, we take f d VI = b.

fdV 2 = 0, fdW3 = 0 and f;:(cp.J ds = O. The mean radius of c in this ;;se can be

assumed to be infinitely small. It can be seen from (6) and (7) that the stress field can be
obtained from the deflection field of the slab by applying a concentrated couple, T lo

which is proportional to the Burgers vector. If the c in the slice is a boundary of a crack
or a vacancy, the corresponding domain bounded by c' in the slab can be replaced by
a rigid plug without F3 and ~. When the slice has an edge dislocation and a crack, the
slab analogy can be achieved by applying a concentrated couple at the corresponding
dislocation position in the slab which has a rigid plug or domain corresponding to the
domain of the crack in the slice.

FIG. 2. Illustration of a discontinuity line c and a path of the line i,ntegral.

As a further application of the slab analogy, it will be interesting to show the stress
field due to a coherent precipitation in crystals. The stress field can be regarded as the
residual stress field due to an initial strain distributed as 83 = constant inside of c and
83 = 0 outside of c. It can be seen from (1) that the residual stress field is equivalent to
the stress field due to a surface dislocation distributed along c. Since eij in (1) is the sum
of an elastic strain and the initial strain 8i~' integrals

[- f/ 3'lJk'i dxk] and [ - £83 dx j - { e3'hxhe3.lJk.• dxk]

take the places of { dW 3 and {dVi in (1), provided that there are no dislocations. If

the path c is taken as a narrow strip AB in domain 1 and BA in domain II as shown
in Fig. 2, the former becomes zero and the latter becomes

[- (rB
(8i%dxj + ((88)lIdxj) = fA 88 dxt]

·A 'B B

Replacing f dVi in (7) by f
c

8i~ dx j , and putting f
c

dW3 = 0, f a~ (cp) ds = 0 one obtains

yAF3-D=O,
(10)
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It can be regarded as a line distribution of moment along c' with ti satisfying the relation

_ yti = Eo~.dxj
D "'J ds'

3. EXPERIMENTS

A square slab (12" x 12" x i") of Plexiglas (P in Fig. 3) is clamped in a steel frame and
set parallel to a grid screen (S in Fig. 3). A camera is mounted behind a hole in the center
of the screen. The front surface of the slab reflects the image of the grid screen into the
camera. The film is exposed first to the grid screen image reflecting from the undeformed
slab, and then to the image reflecting from the deformed slab. The resulting double
exposure consists of Moire fringes, which are related to the deflection of the slab. The
black spot near the centers of the pictures is an image of the camera hole in the grid
screen. The cross lines passing through the image of the camera hole are caused by
slight mismatches in jointing the four pieces of grid paper on the screen.

FIG. 3. Illustration of the circular grid screen (S), the slab of Plexiglas (P), and the loads (w).

(a) An edge dislocation

An edge dislocation in the slice corresponds simply to one concentrated couple on
the slab. The couple is applied by a Plexiglas bar carrying two opposite loads. The bar
is attached by suitable cement at the position corresponding in the slab to the position
of dislocation in the slice.

The mathematical expression of the stress field of the dislocation is

Gb y(3x2+y2)
(J =

x 2n(1- v) (x2+y2)2 '

Gb y(x2_ y2)
(J = -:---:--- -._-';;--;;-

y 2n(1- v) (x2+y2)2'

when the material is infinitely extended.
Figure 4 and Fig. 6 are the photographs of the fringes for this case. In Fig. 4 the

direction of the lines of the grids is parallel to the x-axis. In Fig. 6 the direction of the
lines of the grids is normal to the x-axis. Figs. 5 and 7 show their stress fields. The
theoretical values are calculated from the above formula by neglecting the edge effect
of the slice.
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FIG. 5. Experimental value of CT x calculated from Fig. 4 along the y-axis, comparing with the well-known
solution (A. H. Cottrell, Plastic Flow in Crystals, p. 34) in an infinitely extended material. b is the
Burgers vector and G is the shear modulus.
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FIG. 7. Experimental value of CTy calculated from Fig. 6 along the y = 2b line, comparing with the
well-known solution (A. H. Cottrell, Plastic Flow in Crystals, p. 34) in an infinitely extended material.

(b) A circular precipitation

Precipitation in the slice corresponds to a distributed torque applied along the closed
line in the slab which corresponds to the boundary of precipitation in the slice.

The distributed torque is applied to the boundary by bending of a series of bars
which are attached to the slab. The theoretical stress field of a circular disk of radius b
due to a uniform dilatation e8 = <5ijeO inside of a circular disk with radius a can be
obtained from "Theory of Elasticity" by Timoshenko, p.407, and gives

for r ~ a

for r ::;; a,

for r ~ a (13)

for r ::;; a.= ieoE:: (1- ~:)
We assume this stress field is the same stress field as that due to a circular precipitate
with radius a. Figure 8 shows the photograph of Moire fringes of the slab, when the



FIG. 4. Moire fringes showing white contour lines of awl ay in the slab,
corresponding to a",1 ay in the stress field due to an edge dislocation

located at the center of the slice.

FIG. 6. Moire fringes showing white contour lines of awjax in the slab,
corresponding to a",jax in the stress field due to an edge dislocation

located at the center of the slice.
[facing p. 184



FIG. 8. Moire fringes showing white contour lines of (:wily, corresponding
to (?!cy in the stress field due to a circular precipitation at the center

of the slice.

FIG. to. Moire fringes showing white contour lines of cw/cy, corres­
ponding to ccpf 8.1' for the stress field in the neighborhood of a circular

hole due to an edge dislocation.



FIG. 12. Moire fringes showing white contour lines of ow/ox, corres­
ponding to O'f!/ox for the stress field in the neighborhood of a circular

hole due to an edge dislocation.

FIG. 13. Moire fringes showing white contour lines of ow/oy', corres­
ponding to or;>/cy' for the stress field in the neighborhood of a crack

due to two edge dislocations.



FIG. 15. Moire fringes showing white contour lines of ow/ox', corres­
ponding to or;>!ox' for the stress field in the neighborhood of a crack

due to two edge dislocations.
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FIG. 9. Experimental values of (19 calculated from Fig. 8 along the y-axis, comparing with the well­
known solution (S. Timoshenko, Theory ofElasticity, p. 407), where a is the radius of the precipitation,
and 00 is the misfit strain.

lines of the grids are parallel to the x-axis. Figure 9 compares the stress distribution
calculated by the slab analogy to the above theoretical field.

(c) A dislocation and a circular hole

In order to have a rigid domain in the slab corresponding to the hole in the slice,
a circular cylinder of Plexiglas is attached at the position in the slab which corresponds
to the hole in the slice, since the cylinder has an infinitely large rigidity of bending. An
edge dislocation is located in the neighborhood of the hole. The mathematical solutions
of this case is given by Dundurs and Mura [11]. Figures 10 and 12 show the Moire
fringes and Fig. 11 shows the stress distribution. The stress (J'y along the x-axis becomes
zero.
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FIG. II. Experimental value of (1. calculated from Fig. 10 along the x -4b line, comparing with
the solution by Dundurs and Mura [II].

(d) A crack and two dislocations

In order to have a rigid domain in the slab corresponding to the crack in the slice,
a rectangular block of Plexiglas is attached at the corresponding position in the slab.
The two dislocations are located in the neighborhood of the crack. The thickness of the
crack is taken as that of the radius of the dislocation core. It means that the thickness
of the rectangular block is comparable to the radius of the domain where the concentrated
couple is applied.

The length of the crack is taken as four times of the dislocation core. The location
of the crack is shown in Fig. 14. Figures 13 and 15 show the Moire fringes when the
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FIG. 14. Experimental value of ax. calculated from Fig. 13 along the y-axis.
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FIG. 16. Experimental value of aycalculated from Fig. 15 along the x'-axis.

grid lines are parallel to the x'-direction and the i-direction, respectively. The experi­
mental values of normal stress components along the x'- and y'-axes are shown in Fig. 14
and Fig. 16.

4. DISCUSSION

It is interesting to note in Fig. 5 that the value of the stress due to a dislocation has
a finite maximum value about 0·4 G, contrary to the Volterra stress field (12) which
becomes infinite at y = 0 when approached along the y-axis. This discrepancy stems
from the fact that the concentrated couple in the analogy was applied at a certain finite
domain in the slab instead of being applied at one point. Thus, the stress field obtained
in this experiment can be understood as that of dislocations distributed inside the finite
domain rather than that of a discrete dislocation at one point. As Peierls [12] pointed
out, a more realistic state of the dislocation in crystals can be obtained by distributing
infinitely small dislocations in a finite domain rather than a discrete dislocation at one
point, where the total strength of the distributed dislocations is taken as the Burgers
vector of the discrete dislocation. It is reasonable, therefore, to say that the stress field
obtained in this experiment is closer to the stress field due to a Peierls dislocation, which
is believed to be more realistic than the Volterra dislocation.

It can be seen from Fig. 6 that ocp/ox is constant along the x-axis at y = O. Since
(ly = (j2cp/OX2, one obtains (ly = 0 along the axis at y = 0, which agrees completely with
(12).



Application of the slab analogy to the study of stress fields induced by imperfections in crystals 187

The coefficients of proportionality A and}' in (6) were taken as follows for Figs. 4-7.
The radius (t in.) of the domain in the slab where the concentrated couple was applied
was assumed to correspond to the core radius or the Burgers vector (b = 2·86 x 10- 8 em)
of the dislocation. The ratio of the latter to the former yields A = 4·5 x 10- 8. The value
of }' is determined as 19·3E cm from (7), -yATtiD = Eb, by substituting the applied
couple T 1 = -2,946 kg. cm, b = 2·86 X 10- 8 cm, and D = 89·6 kg. em.

It can be seen from Fig. 8 that 02cp/oy2 = (Tx is constant along the y-axis inside the
precipitation. Since (Tx along the y-axis is (To, the distribution becomes as shown in Fig. 9.
The position r along the y-axis is expressed in terms of the radius of the precipitation.
The diameter of the precipitation corresponds to 1·2 in. diameter of the circular domain
in the slab along which the line moment was applied. The coefficients A and )' in this
case were taken from (6) and (11) as 0·656 a/cm and 70·5 BoE em respectively. The result
agrees very well with (13).

The precipitation considered in this example is a special case of general precipitations.
Some incoherent precipitations in crystals have no misfit to the matrix, but have an
elastic constant which does not equal that of the matrix. To this case the slab analogy
cannot be applied without special modifications which will be discussed in a later
publication.

The coefficients of proportionality for Figs. 10-16 were taken the same as for Figs.
4-7. The stress fields calculated from the Moire fringes seem to be very reasonable.
If the circular hole in Figs. 10 and 12 is assumed to be a vacancy in a crystal, the pictures
show the stress relief of the edge dislocation due to a vacancy in the neighborhood of
the dislocation. It may be possible to find the most stable position of the vacancy in the
neighborhood of the dislocation, if the strain energy is calculated for the various positions
of the vacancy. This strain energy can be calculated from the potential energy supplied
to the analogous slab.

The example shown in Figs. 13-16 may be useful in the study of fracture initiation
or migration. Zener [13J suggested a possibility of the initiation of a micro-crack at the
root of the piled-up edge dislocations. The direction of the crack in this experiment was
taken along the y'-axis with an angle of 70·5° to the x-axis and the two dislocations are
piled-up along the x-axis. Stroh [14] found this angle as the direction where the maximum
tensile stress is acting, and also calculated a similar stress field when many dislocations
are piled-up and a crack was initiated at the root of the leading dislocation. Stroh had
to make several assumptions in his calculation, which become unnecessary if the slab
analogy is applied.

As a general conclusion, it can be said that the slab analogy presented in this paper
gives a useful method for the two-dimensional stress analysis in the field of micro­
mechanics, provided that errors sometimes as large as 10 per cent are admissible. Some
of the errors are due to the creep and non-uniform sheet thickness of Plexiglas, both
presumably being capable of improvement by use of alternative materials.

Another source of error is presented by a finite rather than infinite extent of the model
slab leading to discrepancies of the type shown at large y in Figs. 5 and 11.
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Zusammenfassuog-Ebene Spannungsfelder in Kristallen, erzeugt durch Randversetzungen, Vakanzen,
Prezipitationen, Risse und deren Kombinationen, werden experimentell bestimmt durch Anwendung der
Analogie zwischen der Airy'schen Spannungsfunktion in einer Scheibe und der Durchbiegung einer Platte.
Die Resultate stimmen ziemlich gut tiberein mit denen, die theoretisch erhalten wurden. Es ist somit festgestellt
worden, dass komplizierte Probleme der Spannungsberechnung auf dem Gebiete der Mikromechanik mit
den in dieser Arbeit vorgeschlagenen Methoden gelost werden konnen.

AOC1'p8KT-nOJlY'leHbl 3KcnepHMeHTaJlbHO ,llByMepHble nOJllI B KpHCTaJlJlaX, o6pa30BaHHble BCJle,llCTBHe
;:J;HCJlOKaUHli: Ha KpalIX, HJlH H3 3a nycToT, Bbma;:J;eHHlI, paCTpeCKHBaHHlI HJlH HX KOM6HHaUltli:, ynoTpe6JllIlI
aHaJTOrHlO IIJlHTbl, MelK;:J;y 4>yHKUHeli: HanplIlKeHHlI Ali:PH B TOHKOli: nJlaCTHHKe H nporH60M B nJlHTe. 3TIt
pe3ynbTaTbI cornaCYIOTClI ;:J;OCTaTO'lHO XopOWO C TeopeTIt'leCKItMH pe3ynbTaTaMIt. TaKItM 06pa30M
Hali:;:J;eHO, 'ITO HeKOTopble cnOlKHble IIpo6JleMbI B aHanlt3e HanplIlKeHItli: B 06naCTH MItKpOMeXaHItKIt MoryT
6bITb pa3peweHbI IIocpe;:J;CTBOM MeTO;:J;a, npe;:J;nolKeHHoro B 'HOlt pa6oTe.


